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A COMPARISON OF NORMAL AND
ELLIPTICAL ESTIMATION METHODS IN

STRUCTURAL EQUATION MODELS

ABSTRACT

Monte Carlo simulation compared chi-square statistics, parameter estimates, and root mean

square error of approximation values using normal and elliptical estimation methods. Three research

conditions were imposed on the simulated data: sample size, population contamination percent, and

kurtosis. A Bent ler-Weeks structural model established the relationship between the sample variance-

covariance matrix and the specified population model. The elliptical generalized least squares

estimation method provided the better chi-square results in the presence of kurtosis. The parameter

estimates were similar across research conditions for both the normal and elliptical estimation methods.

The root mean square error of approximation values were robust in the presence of kurtosis for the

elliptical estimation methods. The root mean square error of approximation is therefore the preferred

inferential approach to assessing model fit in the presence of kurtosis because of known distributional

properties and determination of confidence intervals for hypothesis testing.
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A COMPARISON OF NORMAL AND
ELLIPTICAL ESTIMATION METHODS IN

STRUCTURAL EQUATION MODELS

Some type of estimation method is used in all parametric statistics, e.g., regression analysis,

factor analysis, discriminant analysis, and canonical correlation analysis (Ferguson & Takane, 1989).

The various estimation methods are used to derive sample estimates of population parameters

(Marcoulides & Hershberger, 1997). The estimation methods however produce different results

depending upon assumptions made by the researcher. In structural equation modeling, various normal

and elliptical estimation methods can be used to estimate population parameters from sample data.

Least squares (LS), generalized least squares (GLS), and maximum likelihood (ML) estimation

procedures assume a normal distribution (Bollen, 1989). Elliptical LS (ELS), Elliptical GLS (EGLS),

and Elliptical re-weighted least squares (ERLS) procedures assume an elliptical distribution (Bender,

1992).

RELATED RESEARCH LITERATURE

In practice, one typically does not know the population variance-covariance and the

population parameter(s). Hence, an estimation method is used to obtain sample estimates of the

unknown population parameter(s) based on the sample variance-covariance matrix. Once sample

parameter estimates are derived, one can compute the model implied sample variance-covariance

matrix, E . Sample parameter estimates are derived such that I is as close to S as possible. The
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difference between S and I is typically indicated by a chi-square statistic, although the root mean

square of approximation is also recommended (Schumacker & Lomax, 1996). Obviously, if S - E =

0 , then the sample parameter estimates derived from the estimation method perfectly reflect the

population parameters based on the fit function, F( S, E(0)), and chi-square equals zero.

NORMAL DISTRIBUTION THEORY

The normal distribution with certain statistical assumptions has played a fundamental role in

multivariate statistical analysis (Muirhead, 1982). A sufficient condition for the underlying normal

distribution assumption to hold is that the observed variables do not have excessive kurtosis. Basically,

the kurtosis of each observed variable should equal zero, which is the kurtosis of a normal distribution

(Bollen, 1989; Browne, 1974). In structural equation modeling, several normal estimation methods are

available depending upon the fit function.

The least squares estimation method (LS) which assumes multivariate normal distributed

variables minimizes the following fit function: Fis = .5 tr [(S - E)2] where the degrees of freedom are:

.5 (p + q)(p + q + 1) - t, and I = the number of independent parameters to be estimated, n = the

number of observations or sample size, (p + q) = the number of observed variables analyzed, and tr =

the trace or diagonal sum of the matrix elements (Schumacker & Lomax, 1996). The fit function is

equal to (n - 1) FLs , which yields a chi-square statistic. The generalized least squares estimation

method (GLS ) yields the following fit function: FGLs = . 5 tr[(S - E) 512, where S' is a positive

definite weight matrix of residuals derived from differences in the matrix elements( i.e., S - E). The

default estimation method in most computer programs is the maximum likelihood estimation method,
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which can be derived by assuming that the observed variables are multivariate normal distributed. The

ML parameter estimates are obtained by minimizing the following discrepancy function: FmL = tr (S

E') - (p + q) + In I E I - ln I S I. If the covariance matrix, S, is close to the predicted population

matrix, E, then the sample data fits the model, and F,,,11., approaches zero ( i.e., if E z S, then In I E I - In

ISIzO ). Likewise, if E S, then the trace or sum of the diagonals will be approximately equal to (p

+ q), the number of observed variables analyzed, and the value of tr (S - (p + q) will approach

zero. In large samples and under specific conditions ( Browne, 1974, 1984; Rireskog, 1967 ), (n -1

)FmL )(2 , where (p* - q) and p* = p(p +l)/2 are the degrees of freedom and q is the number of

parameters to be estimated. Therefore, the ML fit function yields a chi-square statistic.

The multivariate normal distribution of z variables has a mean vector, p and a covariance

matrix, E, described by the density function:

Y
1

e
2,2

where Y = height of the normal curve for z variables, It = a constant 3.1416, and e = base of

Napierian logarithm = 2.7183 (Ferguson & Takane, 1989). Standard score variables have a mean =

0 and a standard deviation = 1, so p. = 0 and Cr = 1. The area under the normal distribution is unity

(see Figure 1).

Insert Figure 1 Here
(Normal Distribution)
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A general formula to derive sample parameter estimates in a structural equation model

given the normal distribution assumption is (Bent ler, 1992):

Q1,1 = 2-1 trkS E)Wd2

The weight matrix, denoted as W2 in this general formula, is replaced by any of the three normal theory

estimators of DI :

(a) W2= I (identity matrix) gives normal least squares(LS)

(b) W2 = S-1 gives normal generalized least squares(GLS)

(c) W2 = -I gives normal re-weighted least squares(ML).

ELLIPTICAL DISTRIBUTION THEORY

Elliptical distributions are based on a broad class of distributions that include both heavy and light

tailed symmetric distributions relative to

0(t) = ri'v \ the normal distribution. The

characteristic function of an elliptical distribution for some function ter ( Muirhead,1982) is of the form:

For m 2, Berkane and Bentler (1986) defined
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K(m) +1 = ilf(m)"
(v ( °))

5

where ilr(m)(0) and ili(0), respectively, are

the in' and the first derivative oftil, evaluated at zero. Assume p=0 without loss of generality, and 110,2...;2m

= E(Xii N2... Xi 2m). Berkane and Bent ler (1986) showed that, if i, = i2 =... =i2m= I, then:

This relationship characterizes the elliptical distribution, i.e., if a random variable y has density i (y), if all

odd moments are zero, and if the (2m)' moment exists and is defined by p,2,, = C(m)(p2)m, for some

constrained C depending on m, then y is elliptically distributed.

The multivariate elliptical distribution ofy variables has a mean vector, .t, and a covariance matrix,

E, described by the following density function (Bentler, 1992):

ki det(E)-v2g(k2(z µ)'E -1(z-

where kl and k2 are constants and g

(2m)! ox(m) ixiti(2)r is a non-negative function. This

2"' m!
density function yields an elliptical
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distribution. The y variables have a common kurtosis parameter of:

6
= 30. 2

which describes the tails of the distribution relative to the multivariate normal distribution. The multivariate

normal distribution is therefore a special case of the multivariate elliptical distribution when K = 0. Values

for the parameter K, other than 0 (zero), characterize elliptical distributions (Berkane & Bentler, 1987a;

1987b).

Insert Figure 2 Here
(Elliptical Distribution)

A general formula to derive sample parameter estimates given an elliptical distribution assumption

(Bentler, 1992) is:

2
QE = 2- 1(k + 1)- 1 trkS S)W21 ditr(S S)W2 I. 2

The weight matrix, denoted as W2 in this general formula is replaced by any of three elliptical

estimators of DI :

(a) W2 = I (identity matrix) gives elliptical least squares(ELS) estimates;

(b) W2 = (fixed) gives elliptical generalized least squares(EGLS) estimates;
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(c) W2 = E (iteratively updated) gives elliptical re-weighted least squares(ERLS) estimates.

The Mardia-based K coefficient (Martha, 1970; 1974) can be used in computing elliptical

computations (Bentler, 1992). The default computation of K (Shapiro & Browne, 1987) is given by:

k,= g2,'
p(p + 2)

2

where, g2 = N 'E"' I (z, z)'S-1(z, z) I p(p+ 2)

is the deviation from the expected multivariate Mardia-based K kurtosis value. The z notation references

raw score and mean vectors, respectively. The normalized (standard score) estimate is given by:

g2,p

(8p(p + 2) / N)1/2

which, in large samples, operates the same as the unit normal variate in the normal distribution. The

normalized estimate can be used to test the null hypothesis of multivariate normality.

The relative merits of alternative estimators of K has not yet been established (Bentler, 1992).

In non-elliptical populations, these estimators do not necessarily converge. The Martha -based K

coefficient, however, does have asymptotic expectation and variance, such that:

E (k,)= k .
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The use of normal or elliptical distributions in structural equation modeling is based on theoretical

considerations. It is possible that failures of normal or elliptical estimation methods can be associated

with the estimation of K (Tyler, 1982 & 1983). In most estimation methods, however, an assumption

underlying the fit function is that the variables have some particular multivariate distribution, either

normal or elliptical. Consequently, the chi-square (x2) test is used as a goodness-of-fit test (fit

function) between S and E , given optimal sample weight estimates.

CHI-SQUARE, PARAMETER ESTIMATES AND KURTOSIS

Chi-Square

A number of studies have investigated the chi-square statistic in normal and non-normal data

samples. In non-normal samples containing kurtosis, the chi-square statistic based on the ML

estimation method was too large, causing the rejection of a true structural equation model too often (

Bentler, 1992; Harlow and Newcomb, 1984; La Du and Tanaka, 1989; Muthen and Kaplan, 1985;

Tanaka, 1984). In studies using ML estimation with normal samples, the chi-square statistic had little

bias with samples ranging from n > 30 (Geweke & Singleton, 1980), to n = 200 (Boomsma, 1983), to

n = 500 (Browne, 1982, 1984), to n = 1000 (Muthen & Kaplan, 1985). Wang, Fan, and Willson

(1996) explained that the adjusted chi-square test (Satorra-Bentler re-scaled chi-square) reported in

the presence of elliptical distributed data can provide acceptable conclusions given an appropriate

sample size that balances the statistical power of the test with sampling variation. Hoogland and

Boomsma (1998) suggested that the ML chi-square statistic often rejected the true model when the

sample size was smaller than five times the number of degrees of freedom of the model. When the
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observed variables had an average positive kurtosis as large as 5.0, the sample size may have to be

increased by up to10 times the size of the model. Given that the model is appropriate, the GLS chi-

square statistic may have an acceptable performance for a sample size that is two times smaller than the

sample size needed for an acceptable performance of the ML chi-square statistic.

Weng and Cheng (1997) recommended that although chi-square values given by ML, LS, and

GLS estimators differ, the effects of this discrepancy on relative fit indices may diminish as sample size

increases. For example, if a model fits the data and the sample size is very large, ML and GLS

estimation methods yield a very similar chi-square statistic (Browne,1974).

Parameter Estimates

The effects of various estimation methods on the parameter estimates in structural equation

models has also been studied. Harlow(1985) concluded that ML and ERLS parameter estimates were

comparable in a Monte Carlo factor analysis simulation study. Muthen and Kaplan(1985) found no

difference between parameter estimates using the ML and GLS estimation methods. Henly(1993)

pointed out a striking similarity between ML and GLS estimates. Wang, Fan, & Willson(1996) also

found the results from the ML and GLS methods to be practically identical, except for some

insignificant differences.

Boomsma(1983) in a Monte Carlo study using ML estimation with normal continuous data,

found that "Generally for N 200 there is little bias in estimating parameters..."(p.116). Boomsma also

examined categorical, skewed, and kurtotic data, and he concluded that parameter estimates were

unbiased for N = 400 using the ML estimation method. Boomsma's findings were supported in a
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Monte Carlo study by Muthen and Kaplan(1985) which studied estimates based on ordered

categorical data using ML, GLS and ADF estimation methods. Muthen and Kaplan found that ML,

GLS, and ADF methods were unbiased when using a sample size of 1000. Browne (1982, 1984)

conducted a Monte Carlo study of ML and ADF estimation in both normal and non-normal continuous

data with N = 400 and N = 500. Browne further suggested that parameter estimates were unbiased

when using ML estimation in normal samples.

Hoogland and Boomsma (1998) found that the bias of ML parameter estimates increased when

the level of univariate skewness and kurtosis deviated increasingly from normal theory values.

Hoogland & Boomsma also suggested that a larger sample size( > 500) was a remedy for obtaining

unbiased parameter estimates. Wang, Fan, and Willson(1996) concluded that population parameter

mean estimates across 100 replications approached the population values as the sample size increased

from 200 to 1000. The differences between the minimum and maximum parameter estimates

decreased remarkably with an increased sample size. The quality of parameter estimates was not of

much concern even with non-normal data, provided that appropriately large samples were used.

Wang, Fan, and Willson also found that the parameter estimates appeared to stabilize when the sample

size reached 500. Weng and Cheng(1997) compared the three normal theory estimators and found

that ML and LS estimation methods yielded identical parameter estimates, which were slightly different

from GLS estimates.

Kurtosis

A number of studies have examined the impact of kurtosis in non-normal data. Browne (1982,
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1984) developed an asymptotic distribution free index which permitted the use of a generalized least

squares estimator even when the variables exhibited excessive kurtosis ( "peakness ") or insignificant

kurtosis( "flatness ") in the multivariate normal distribution. Social scientists frequently are concerned

about the skewness in their data; however, Browne indicated that it is kurtosis, not skewness, that was

critical because kurtosis is a term in the mathematical expression for the covariances. That is, when

data are not normally distributed, the researcher must know about the variables kurtosis, as well as the

variable means and covariances, in order to make inferences about individual patterns of scores.

Harlow (1985) studied elliptical distributed data in factor analysis and found the ERLS (

Elliptical reweighted least squares) estimation method performed the best under various levels of

kurtosis (x > 0). Hoogland and Boomsma (1998) further concluded that the bias in parameter

estimates increased when the absolute value of kurtosis increased. They discovered a remarkable

effect on the sign of the kurtosis, namely, the bias of ML estimates is positive for platykurtic

distributions and negative for leptokurtic distributions. Bias becomes most extreme when the underlying

distribution is highly leptokurtic.

The elliptical distribution differs from the normal distribution based on kurtosis in the sample

data. One would therefore expect the chi-square statistics, parameter estimates, and root mean square

error of approximation values to differ when comparing results from these two distributions. It is

anticipated that, normal estimation methods in structural equation modeling would yield biased results

when using non-normal sample data. Moreover, elliptical estimation methods should out perform

normal estimation methods given elliptical data distributions.

14



12

METHODS AND PROCEDURES

The EQS 5.7 software program (see appendix) permitted the specification of different population

data contamination percentages ( .05 and .10), sample sizes (1000, 5000, 10000), and kurtoses (1, 2, 3),

which followed suggestions by Mattson (1997) and Mooney (1997). This yielded a 2 X 3 X 3 design with

18 unique research conditions. The EQS 5.7 program generated a sampling distribution based on 100

replications of these conditions. The fit function (x2), structural coefficient (y), and root mean square error

of approximation values were saved in separate files and compared in tables across these research

conditions.

Simulated Data Sets

The EQS 5.7 software program (Bentler & Wu, 1995) was used to generate pseudo-random

samples of data to compute the sample variance-covariance matrix. Previous research by Bang and

Schumacker (1998) has indicated that pseudo-random number generators don't produce normal

distributions of data with sample sizes less than 10,000. Three sample sizes of 1000, 5000, and 10000

were chosen for the study to reflect this lack of normality in pseudo-random number generators when

comparing the estimation methods.

Non-normal distributions were created by generating a normal distribution with .t and E, and

adding a smaller percent non-normal distribution with the same µ, but with a variance-covariance equal

to K * E. The scale factor, K, which creates the non-normal population, ranges between 1 and 10.

The present study used values of K = 1, 2, or 3, because the use of values greater than 3 generated

elliptical data which failed to converge using either normal or elliptical estimation methods in the study.
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The smaller percent non-normal distribution which is added to a normal distribution can range between

0% and 100%, but is usually 10% or less; 5% and 10% were used in the study. Structural equation

modeling estimates are typically asymptotic, meaning that they approach the true population value as

sample size increases. These sample sizes are therefore suitable, especially since several researchers

(e.g., Bentler,1992; Browne, 1982,1984) have suggested that larger sample sizes may be needed when

estimation methods are based on fourth-order moments (kurtosis).

Structural Model

Gerbing and Anderson (1992, 1993) suggested that using substantively meaningful models in

Monte Carlo simulation may increase our understanding of the results and that most simulation studies in

structural equation modeling have used from two to six latent variables, with two to six indicators for

each latent variable. In this study, a specific population model was simulated based on the Bent ler-

Weeks (Bent ler & Weeks, 1980) structural equation model (see Figure 3).

The number of distinct values in the sample variance-covariance matrix is ten (10). This can be

calculated as: .5 (p + q) (p + q + 1), where p = the number of dependent variables and q = the number

of independent variables. The degrees of freedom for the chi-square statistic is calculated as the number

of distinct values in the sample variance-covariance matrix minus the number of parameters to be

estimated. Since there are ten distinct values in the sample variance-covariance matrix and six

parameters to be estimated in the model (four E's, D2, and y), the degrees of freedom is equal to four.
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Insert Figure 3 Here
(Bentler-Weeks Model)

The Bentler-Weeks structural model is specified in the EQS 5.7 software program using the

"/EQUATION" command to generate the population variance-covariance matrix (see appendix). The

EQS program "/EQUATION" command specifies fixed factor loadings of .80 (validity coefficients) for

the observed variables that identify both the exogenous factor, Fl, and the endogenous factor, F2. The

"/EQUATION" command further indicates that VI and V2 are two observed variables that are

indicator (manifest) variables of Fl (exogenous factor) and that V3 and V4 are two observed variables

that are indicator (manifest) variables of F2 (endogenous factor). A structural coefficient indicates that

Fl predicts F2. The following set of "/EQUATION" command lines indicate the Bentler-Weeks

structural equation model in the program:

/EQUATIONS
VI = .8*F1 + El;
V2 = .8*F1 + E2;
V3 = .8*F2 + E3;
V4 = .8*F2 + E4;
F2 = *F 1 + D2;

where V1-V4 are observed variables, E 1-E4 are measurement errors of the observed variables, Fland

F2 are factors (latent variables), and D2 is the error of prediction for F2.

Data Analysis
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The EQS 5.7 software program (Bent ler & Wu, 1995) was used to simulate normal and

elliptical distributions of data (see Figures 1 and 2) and estimate chi-square, structural coefficient, and

root mean square error of approximation values for 18 unique research conditions based on sample size,

population contamination percent, and kurtosis. The EQS 5.7 software program is annotated to indicate

which command lines were changed for each of the research conditions. For example, "CASES" was

used to specify the different sample sizes, "METHODS" was used to specify pairs of normal and

elliptical estimation methods, and "CONTAMINATION" was used to indicate the smaller percent non-

normal distribution and kurtosis factor. A sampling distribution based on 100 replications using a

pseudo-random number generator with different seed values produced a point estimate for chi-square,

parameter, and root mean square error of approximation values. The EQS 5.7 software program

provided the necessary summary statistics.

The model chi-square values can be compared against a critical chi-square value of 9.488 at the

.05 level of statistical significance for four degrees of freedom and a root mean square error of

approximation value equal to or less than .05, implying a close fit. Kurtosis values should be greater

than the value of k > -2/(p+2), where p is the number of measured variables (Bentler and

Berkane,1986; Tyler,1982). Given 4 measured variables, k > -.25. The user should be aware that the

application of elliptical distributions to structural equation modeling is based on theoretical

considerations. There is little experience that can be used to provide guidance on how to avoid

breakdowns in the method, i.e., misleading results. It is possible that potential failures of elliptical

estimation methods can be associated with poor estimation of k, hence poor estimation of the sample

variance-covariance matrix.
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Monte Carlo simulations were conducted based on generating data from a known population

model, then estimating this true population model under different research conditions. Consequently,

power determination was not required in the study. In practice, testing a null hypothesis of model fit

requires power and sample size considerations. Schumacker and Lomax (1996) and MacCallum,

Browne, and Sugawara (1996) provide programs and recommendations for power calculations and

sample size. For example, the Hoelter critical N, which is CN = ( x 2 / F ) + 1, gives the sample size at

which F would lead to a rejection of the null hypothesis. Their programs also use modification index

values and root-mean-square error of approximation (RMSEA) values. The RMSEA values, together

with the degrees of freedom (df) for the model, the sample size (n), and Type I error rate (alpha) are

used to calculate power. RMSEA .05 are considered a 'close fit'; values between .05-.08 are

considered 'fair fit', between .08-.10, 'mediocre fit', and RMSEA > .10, 'poor fit'.

RESULTS

The chi-square values at k = 1 for both normal and elliptical estimation methods yielded similar

results across the research conditions. These findings were expected because only sample size effects

were present, with percent contamination having no impact. The results more clearly reflect the outcome

of data generated using a pseudo-random number generator (An average chi-square value of 3.84 was

obtained from the sampling distribution based on 100 replications using a normal distribution with

sample sizes greater than 10,000). The structural coefficients were similar for both normal and elliptical

estimation methods across the research conditions. The root mean square error of approximation
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(RMSEA) was robust across the research conditions for all estimation methods, except under extreme

levels of contamination (10%) and kurtosis (k=3).

Least Squares Estimation

The normal least squares (LS) and elliptical least squares (ELS) estimation methods are

compared in Tables 1 to 6. As the percent non-normal data and kurtosis increased, the chi-square

values increased, but the elliptical least squares estimation method computed lower chi-square values.

The structure coefficients and root mean square error of approximation values (RMSEA) remained

similar, but were more distorted under conditions of extreme percent contamination (10%) and lcurtosis

(k=3). The least squares estimation method failed to yield a solution (lacked convergence) under these

conditions, returning fewer than the required 100 replications.

Insert Tables 1 to 6 Here
LS/ELS Tables

Generalized Least Squares Estimation

The normal generalized least squares (GLS) and elliptical generalized least squares (EGLS)

estimation methods are compared in Tables 7 to 12. As the percent non-normal data and kurtosis

increased, the chi-square values increased, but the elliptical generalized least squares estimation method

computed lower chi-square values. The structure coefficients and root mean square error of

20
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approximation values (RMSEA) remained similar across research conditions and were more robust

under conditions of extreme percent contamination (10%) and kurtosis (k=3) than the previous least

squares estimation methods. The elliptical generalized least squares estimation methods also performed

better under these extreme conditions and returned the required 100 replications, except for

percent =l0 %, n=1000, k=3.

Insert Tables 7 to 12 Here
GLS/EGLS Tables

Maximum ik Estimation

The maximum likelihood (ML) and elliptical re-weighted least squares (ERLS) estimation

methods are compared in Tables 13 to 18. As the percent non-normal data and kurtosis increased, the

chi-square values increased, but the elliptical re-weighted least squares estimation method computed

lower chi-square values. The structure coefficients and root mean square error of approximation

(RMSEA) values remained similar across research conditions and were similar to results obtained using

the least squares estimation methods. The elliptical re-weighted least squares estimation method

however performed better under extreme conditions and returned the required 100 replications, except

for percent = 10%, n=1000, k=3.

Insert Tables 13 to 18 Here
ML/ERLS Tables
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CONCLUSIONS AND RECOMMENDATIONS

The elliptical estimation methods performed better overall than the normal estimation methods in

the presence of increasing contamination and kurtosis, e.g., the normal least squares (LS) estimation

method failed to reach a solution (lacked convergence) under increased kurtosis. The elliptical

generalized least squares (EGLS) estimation method overall performed better than the other estimation

methods in computing chi-square, structure coefficient, and root mean square error of approximation

values under increasing contamination and kurtosis. Previous findings by Bentler (1983a), Harlow and

Newcomb (1984), Muthen and Kaplan (1985), and Tanaka (1984) which indicated that ML chi-square

estimates were too large, causing the rejection of a true structural equation model too often, was

supported in the study. The tendency for increased levels of kurtosis to affect elliptical estimated chi-

square statistics, as reported by Harlow (1985), was also substantiated in the present study. In

contrast, the findings by Weng and Cheng (1997) that chi-square values computed by LS, GLS, and

ML estimators differ, but the effects diminish as sample size increased was not supported, especially

under increased kurtosis in this study.

The effects of various estimation methods on the parameter estimate in the structural equation

model was found to be minimal. This was supported by Harlow(1985), who concluded that ML and

22
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ERLS parameter estimates were comparable in a Monte Carlo simulation study; Muthen and

Kaplan(1985), who found no difference between parameter estimates using ML and GLS estimation

methods; Henly(1993), who pointed out a striking similarity between ML and GLS estimates; and

Wang, Fan, & Willson(1996) who also found the results from ML and GLS estimation methods to be

practically identical as sample size increased.

The root mean square error of approximation (RMSEA) was robust across the research

conditions and estimation methods. The root mean square error of approximation values were especially

robust in the presence of kurtosis using the elliptical estimation methods. The root mean square error of

approximation is therefore the preferred inferential approach to assessing model fit because of known

distributional properties and determination of confidence intervals for hypothesis testing.

In practice, researchers are often confronted with non-normal data, i.e., skewness and kurtosis.

Recommendations based in part on the findings in this study and related research indicate several

suggestions. First, determine the sample size and power needed to conduct a test of the structural model

using programs by MacCallum, Browne, and Sugawara (1996) and/or Schumacker & Lomax (1996).

Second, based on a comparison of non-normal data transformation methods, use a probit regression

transformation to produce an approximate normal distribution of data to handle skewness. Third, use

the elliptical generalized least squares estimation method with non-normal kurtotic data. Fourth, report

the root mean square error of approximation (RMSEA) and associated confidence interval to test

hypotheses concerning model fit. And finally, when reporting chi-square statistics, conduct the Bollen-

23
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Stine bootstrap technique to yield a test of the sufficiency of the obtained model chi-square value and/or

report the Satorra-Bentler re-scaled chi-square statistic (Chou, Bentler, Satorra, 1991).
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APPENDIX

EQS 5.7 Computer Program

/111LE
A comparison of normal and elliptical estimation methods

/SPECIFICATIONS
CASES=1000;
VARIABLES=4;
METHODS=LS,ELS;
MATRIX=RAW;
ANALYSIS=COVARIANCE;

/EQUATIONS
V1=.8F1+E1;
V2=.8F1+E2;
V3=.8F2+E3;
V4=.8F2+E4;
F2= 1 *Fl+D2;

/VARIANCES
F1=1; El to E4=*;
D2=*;

/SIMULATION
POPULATION=MODEL;
REPLICATIONS=100;
SEED=7896543;
CONTAMINATION=.05,1;

/Technical
eiter = 100;start=els;

/OUTPUT
parameter estimates;standard errors;

/END

!(Sample Size: 1000, 5000, or 10000)

! (Compare normal and elliptical estimation methods)

! (/Equations specify Bentler-Weeks model)
! (Number of replications =100)
! (Seed for random number generator)
!(Population data contamination level= .05, .10 and

! k factor = 1, 2, 3)
(Iterations and start values for elliptical estimation)

NOTE: In Cheevatanarak, S.(1999), the EQS software program was defective leading to incorrect
tabled values and conclusions. This revised EQS program was used to yield correct tabled values.
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TABLE 1 LS versus ELS method: Contamination = 5%. n = 1000

Contamination X2ELS YLS YELS RMSEA RMSEA
LS ELS

5% 1000 1

3

4.2305

(2.716)
9.7972

(7.045)
29.6109

(16.19)

4.2393

(2.731)
7.2139

(5.152)
11.3825

(2.592)

-.0087

(1.011)
-.0184

(1.209)
.1250

(1.531)

.0087

(1.011)
.0184

(1.209)
-.1250

(1.538)

.0315

(.024)
.0795

(.037)
.1883

(.063)

.0316

(.024)
.0663

(.032)
.1150

(.041)

TABLE 2 LS versus ELS method: Contamination = 5%. n = 5000

Contamination n k Yfu2LS X2ELS YLS YELS RMSEA
LS

RMSEA
ELS

5% 5000 1

2

3

4.1767

(2.529)
28.2544

(12.73)
138.278

(44.23)

4.1820

(2.535)
20.5225

(9.193)
51.0223

(16.968)

-.0012

(1.008)
.0017

(1.210)
-.0481

(1.607)

.0012

(1.008)
-.0017

(1.005)
-.0053

(1.612)

.0148

(.009)
.0688

(.018)
.1944

(.034)

.0149

(.009)
.0588

(.015)
.1196

(.021)

TABLE 3 LS versus ELS method: Contamination = 5%, n = 10000

Contamination n k Y X2ELS YLS YELS RMSEA RMSEA
LS ELS

5% 10000

2

3

3.8879

(2.451)
49.7868

(17.960)
270.248

(64.657)

3.8868

(2.442)
36.2468

(12.995)
97.9009

(23.491)

.0020

(1.007)
.0001

(1.206)
.0139

(1.601)

-.0020

(1.007)
-.0001

(1.206)
-.0139

(1.601)

.0103

(.007)
.0667

(.012)
.1936

(.025)

.0103

(.007)
.0573

(.010)
.1183

(.015)

Note: Standard deviations for chi-squares, parameters, and root mean square
parentheses in the tables. Results based on 100 replications (r), except when

31
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convergence (n = 1,000, k = 3, r = 79; n = 5,000, k =3, r = 97; n = 10,000, k = 3, r = 99).

TABLE 4 LS versus ELS method: Contamination = 10%, n = 1000

Contamination n k x2Ls X2as ?LS YELS RMSEA
IS

RMSEA
ELS

10% 1000 1

2

3

4.2305

(2.716)
18.1399

(10.274)
39.3374

(20.380)

4.2393

(2.731)
11.9387

(6.632)
23.6486

(10.458)

- .0087

(1.011)
.0086

(1.398)
.5394

(1.783)

.0087

(1.011)
-.0086

(1.398)
.0272

(2.012)

.0315

(.024)
.1350

(.045)
.2772

(.090)

.0316

(.024)
.1089

(.037)
.2415

(.072)

TABLE 5 LS versus ELS method: Contamination = 10%. n = 5000

Contamination n X2LS X2ELS YLS YELS RMSEA
LS

RMSEA
ELS

10% 5000 1

2

3

4.1767

(2.529)
73.1212

(21.596)
243.548

(28.048)

4.1820

(2.535)
47.4799

(14.038)
84.0961

(10.651)

-.0012

(1.008)
.0084

(1.005)
-.4071

(2.142)

.0012

(1.008)
-.0084

(1.005)
.4071

(2.142)

.0148

(.009)
.1291

(.020)
.3231

(.016)

.0149

(.009)
.1049

(.016)
.1918

(.011)

TABLE 6 LS versus ELS method: contamination = 10%. n = 10000

Contamination n k Y,u2LS X2ELS YLS YELS RMSEA
IS

RMSEA
ELS

10% 10000

2

3

3.8879

(2.451)
141.967

(33.885)
439.546

3.8868

(2.442)
92.1144

(21.816)
152.562

.0020

(1.007)
.0032

(1.406)
- 1.890

-.0020

(1.007)
-.0032

(1.406)
1.890

.0103

(.007)
.1286

(.016)
.3163

.0103

(.007)
.1046

(.013)
.1883
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Contamination n k X2Ls X2ELs Y LS y ELS RMSEA RMSEA
LS ELS

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in
parentheses in the tables. Results based on 100 replications (r), except when k=3 due to non-
convergence (n = 1,000, k = 3, r = 17; n = 5,000, k =3, r = 5; n = 10,000, k = 3, r = 1).

TABLE 7 GLS versus EGLS method: Contamination = 5%. n = 1000

Contamination n k X 2GLS X 2EGLS YGLS YEGLS RMSEA
GLS

RMSEA
EGLS

5% 1000 1

2

3

4.2199

(2.687)
8.9916

(6.098)
28.9084

(15.008)

4.2282

(2.700)
6.5332

(4.379)
10.2459

(5.197)

-.0068

(1.005)
-.0094

(1.107)
-.0112

(1.290)

.0068

(1.005)
.0090

(1.103)
.0092

(1.264)

.0108

(.013)
.0291

(.021)
.0748

(.025)

.0109

(.013)
.0199

(.019)
.0359

(.017)

TABLE 8 GLS versus EGLS method: Contamination = 5%. n = 5000

Contamination n X2GLS X2EGLS YGLS YEGLS RMSEA
GLS

RMSEA
EGLS

5% 5000 1

2

3

4.1577

(2.520)
25.4624

(10.827)
116.339

(34.803)

4.1629

(2.526)
18.2719

(7.674)
39.6596

(11.372)

-.0001

(1.005)
.0007

(1.110)
.0006

(1.301)

.0001

(1.005)
-.0006

(1.106)
-.0003

(1.275)

.0046

(.005)
.0256

(.007)
.0740

(.011)

.0046

(.005)
.0134

(.019)
.0417

(.006)

TABLE 9 GLS versus EGLS method: Contamination = 5%. n = 10000
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Contamination n k X2GLS XEGLS YGLS YEGLS RMSEA
GLS

RMSEA
EGLS

5% 10000 1
3.8791 3.8781 .0022 -.0022 .0027 .0027

(2.443) (2.434) (1.006) (1.006) (.003) (.003)
44.6443 32.1243 -.0006 .0007 .0313 .0260

(15.073) (10.707) (1.107) (1.103) (.005) (.005)
222.340 76.1177 -.0050 .0068 .0734 .0422

(47.854) (15.914) (1.293) (1.005) (.008) (.004)

Note: Standard deviations for chi-squares, parameters,
parentheses in the tables based on 100 replications.

TABLE 10 GLS versus EGLS method: Contamination

and root mean square of approximation are in

= 10%, n = 1000

Contamination n k X2EGLS YGLS YEGLS RMSEA RMSEA
GLS EGLS

10% 1000 1

2

3

4.2199

(2.687)
16.3307

(8.802)
52.5078

(19.686)

4.2282

(2.700)
10.4576

(5.409)
17.0954

(6.044)

-.0068

(1.005)
-.0134

(1.207)
.0203

(1.548)

.0068

(1.005)
.0126

(1.197)
-.0028

(1.500)

.0108

(.013)
.0518

(.020)
.1078

(.023)

.0109

(.013)
.0362

(.018)
.0554

(.014)

TABLE 11 GLS versus EGLS method: Contamination = 10%, n = 5000

Contamination n k fu2GLS XEGLS YGLS YEGLS RMSEA
GLS

RMSEA
EGLS

10% 5000 1

2

3

4.1577

(2.520)
62.6112

(17.123)
239.777

(42.825)

4.1629

(2.526)
39.7008

(10.729)
75.8848

(13.401)

-.0001

(1.005)
.0008

(1.206)
.0013

(1.561)

.0001

(1.005)
-.0007

(1.196)
-.0102

(.993)

.0046

(.005)
.0536

(.007)
.1082

(.009)

.0046

(.005)
.0418

(.006)
.0597

(.005)

TABLE 12 GLS versus EGLS method: Contamination = 10%. n = 10000
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Contamination n k X2GLS X2EGLS YGLS YEGLS RMSEA RMSEA
GLS EGLS

10% 10000 1

2

3

3.8791

(2.443)
120.921

(26.454)
476.482

(67.304)

3.8781

(2.434)
76.6337

(16.420)
150.603

(20.726)

.0022

(1.006)
.0020

(1.208)
.0020

(1.565)

-.0022

(1.006)
-.0019

(1.199)
-.0016

(1.511)

.0027 .0027

(.003) (.003)
.0537 .0423

(.006) (.004)
.1084 .0604

(.007) (.004)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in
parentheses in the tables based on 100 replications (r), except for n = 1,000, k = 3, r = 98.

TABLE 13 ML versus ERLS method: Contamination = 5%. n = 1000

Contamination n k X2M1 X2ERLS

5% 1000 1

2

3

4.2436

(2.733)
9.6928

(6.969)
34.4752

(20.240)

4.2473

(2.756)
7.4258

(5.478)
14.4736

(9.083)

YML YERLS RMSE RMSEA
ERLS

-.0068 .0068 .0111 .0111

(1.009) (1.009) (.013) (.013)
-.0105 .0102 .0309 .0228

(1.118) (1.114) (.023) (.021)
-.0160 .0104 .0820 .0464

(1.339) (1.314) (.030) (.022)

TABLE 14 ML versus ERLS method: Contamination = 5%. n = 5000

Contamination n k x2mir, x2ERLs
YML YERLS RMSEA RMSEA

ML ERLS

5% 5000 1

2

3

4.1790

(2.532)
27.5948

(12.300)
140.185

(47.217)

4.1919

(2.542)
20.926

(9.495)
56.576

(20.010)

-.0001

(1.006)
.0007

(1.115)
.0015

(1.337)

.0001

(1.006)
-.0005

(1.111)
-.0010

(1.311)

.0047

(.005)
.0330

(.009)
.0813

(.014)

.0047

(.005)
.0278

(.008)
.0504

(.009)
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TABLE 15 ML, versus ERLS method: Contamination = 5%. n = 10000

Contamination X2ML X2ERLS YML YERLS RMSEA
ML

RMSEA
ERLS

"5% 10000 1

2

3

3.8867

(2.449)
48.4701

(17.268)
268.350

(64.916)

3.8880

(2.442)
36.8498

(13.391)
108.588

(27.782)

.0022

(1.006)
-.0005

(1.112)
-.0047

(1.328)

-.0022

(1.006)
.0008

(1.108)
.0050

(1.301)

.0027

(.003)
.0327

(.006)
.0807

(.009)

.0027

(.003)
.0281

(.005)
.0111

(.013)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in
parentheses in the tables based on 100 replications.

TABLE 16 ML versus ERLS method: Contamination = 10%. n = 1000

Contamination X2ERLS YML YERLS RMSEA RMSEA
ML ERLS

10% 1000 1

2

3

4.2436

(2.733)
18.5216

(10.869)
65.9481

(28.302)

4.2473

(2.756)
13.0090

(7.759)
26.8282

(12.471)

-.0068

(1.009)
-.0159

(1.230)
.0514

(1.671)

.0068

(1.009)
.0152

(1.221)
.0257

(1.636)

.0111

(.013)
.0559

(.023)
.1212

(.028)

.0111

(.013)
.0428

(.021)
.0726

(.021)

TABLE 17 ML versus ERLS method: Contamination = 10%. n =5000

Contamination X2ML X2ERLS YNn YERLS RMSEA RMSEA
ML ERLS

10% 5000 1

2

3

4.1790

(2.532)
71.6210

(21.113)
309.804

4.1919

(2.542)
49.9599

(15.285)
121.616

-.0001

(1.006)
.0006

(1.229)
.0027

.0001

(1.006)
-.0007

(1.213)
-.0110

.0047

(.005)
.0575

(.009)
.1230

.0047

(.005)
.0473

(.007)
.0762
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Contamination n k X2mL X2ERLS YML YERLS RMSEA RMSEA
ML ERLS

(65.043) (27.830) (1.675) (1.003) (.012) (.008)

TABLE 18 ML versus ERLS method: Contamination = 10%, n = 10000

Contamination x2mL
X2ERLS YML YERLS RMSEA RMSEA

ML ERLS

10% 10000 1

2

3

3.8867

(2.449)
138.753

(32.933)
618.058

(102.49)

3.8880

(2.442)
96.809

(23.670)
242.540

(43.120)

.0022

(1.006)
.0019

(1.009)
.0029

(1.678)

-.0022

(1.006)
-.0020

(1.215)
-.0025

(1.628)

.0027

(.003)
.0576

(.007)
.1235

(.010)

.0027

(.003)
.0478

(.006)
.0769

(.007)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in
parentheses in the tables based on 100 replications (r), except for n=1000, k=3, r = 96.

Figure 1 Normal Distribution

Figure 2. Elliptical Distribution

Figure 3. Bent ler-Weeks Structural Equation Model
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